Telegram Group & Telegram Channel
Почему интересен ARC prize?

Для тех, кто пропустил - неделю назад был запущен конкурс на миллион, в котором нужно решить ARC - простейший "тест на IQ" для человека/алгоритма. В нём нужно по паре-тройке примеров увидеть закономерность и применить её на тестовом образце (см. пример задачи на картинке). Это проверяет алгоритм на обучаемость, а не на запоминание данных из интернета.

Как я уже недавно писал, если в лоб дать такие задачи GPT-4, то она работает достаточно стрёмно. В то же время, лидируют подходы на основе перебора всевозможных последовательностей элементарных операций. Нужно задать набор таких операций, например, из 50 штук, создать 50^4 "программ" и прогнать их на тренировочных образцах, применив успешные к тесту.

Больше года назад, как только я начал вести этот канал, я писал о том, что совместная работа перебора и нейросетей - это очень мощный инструмент. Это жжёт в Go, в математике, в приложениях. Поиску нужен качественный гайд, чтобы тащить, и таким гайдом вполне может быть LLM, как мы увидели на примере FunSearch.

Такой подход применим при решении "NP-задач", для которых мы можем быстро проверить кандидата на решение. Наличие только пары примеров в ARC сильно усложняет проблему, так как "оптимизация" программы будет работать плохо и нам легче на них "переобучиться" программой. Тем не менее, нет сомнений, что скачка в качестве достичь удастся, и такие попытки уже делаются. Осталось только дождаться сабмитов таких подходов в настоящий тест.

Тем не менее, есть проблема применимости такого подхода. Далеко не всегда в реальности мы можем генерировать тысячи/миллионы вариантов с помощью большой модели, применяя поверх какую-то проверялку, потому что быстрой проверялки просто нет. Для применимости этой большой модели в лоб к произвольной задаче нам нужно получить такую, которая как минимум решит ARC без помощи дополнительного перебора.

А зачем именно нужна такая модель? 2 простых юзкейса:

1) Хочется иногда с чашечкой латте провести время за глубокой дискуссией с моделькой, знающей и хорошо понимающей информацию из интернета. Если вы пробовали долго общаться с моделькой типа GPT-4 на сложную тему, вы замечали, что она вообще не вдупляет.
2) Запустить цикл технологической сингулярности

Про второе поговорим позже на этой неделе.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/190
Create:
Last Update:

Почему интересен ARC prize?

Для тех, кто пропустил - неделю назад был запущен конкурс на миллион, в котором нужно решить ARC - простейший "тест на IQ" для человека/алгоритма. В нём нужно по паре-тройке примеров увидеть закономерность и применить её на тестовом образце (см. пример задачи на картинке). Это проверяет алгоритм на обучаемость, а не на запоминание данных из интернета.

Как я уже недавно писал, если в лоб дать такие задачи GPT-4, то она работает достаточно стрёмно. В то же время, лидируют подходы на основе перебора всевозможных последовательностей элементарных операций. Нужно задать набор таких операций, например, из 50 штук, создать 50^4 "программ" и прогнать их на тренировочных образцах, применив успешные к тесту.

Больше года назад, как только я начал вести этот канал, я писал о том, что совместная работа перебора и нейросетей - это очень мощный инструмент. Это жжёт в Go, в математике, в приложениях. Поиску нужен качественный гайд, чтобы тащить, и таким гайдом вполне может быть LLM, как мы увидели на примере FunSearch.

Такой подход применим при решении "NP-задач", для которых мы можем быстро проверить кандидата на решение. Наличие только пары примеров в ARC сильно усложняет проблему, так как "оптимизация" программы будет работать плохо и нам легче на них "переобучиться" программой. Тем не менее, нет сомнений, что скачка в качестве достичь удастся, и такие попытки уже делаются. Осталось только дождаться сабмитов таких подходов в настоящий тест.

Тем не менее, есть проблема применимости такого подхода. Далеко не всегда в реальности мы можем генерировать тысячи/миллионы вариантов с помощью большой модели, применяя поверх какую-то проверялку, потому что быстрой проверялки просто нет. Для применимости этой большой модели в лоб к произвольной задаче нам нужно получить такую, которая как минимум решит ARC без помощи дополнительного перебора.

А зачем именно нужна такая модель? 2 простых юзкейса:

1) Хочется иногда с чашечкой латте провести время за глубокой дискуссией с моделькой, знающей и хорошо понимающей информацию из интернета. Если вы пробовали долго общаться с моделькой типа GPT-4 на сложную тему, вы замечали, что она вообще не вдупляет.
2) Запустить цикл технологической сингулярности

Про второе поговорим позже на этой неделе.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/190

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Knowledge Accumulator from kr


Telegram Knowledge Accumulator
FROM USA